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Abstract 

This paper describes the redesign of the Federal 

Aviation Administration’s implementation of a 

genetic algorithm used for time shifting flights in air 

traffic scenarios. Time shifted scenarios are used in 

testing decision support tools that predict the 

potential loss of separation between aircraft. This 

paper describes the improvements that resulted when 

this application was redesigned and coded in Java. 

The improvements described in this paper include the 

following:  

• Maintainability improved as a result of a modular 

design using object-oriented techniques. 

• Usability improved as a result of more efficient 

logging techniques, configuration methods, and 

user interfaces.  

• Quality of the solution improved as a result of a 

more accurate method for calculating of aircraft-

to-aircraft conflicts.  

• Timeliness for obtaining a solution improved as a 

result of using modern software engineering 

techniques, such as distributing the fitness 

function across multiple processors and caching 

fitness scores. 

Introduction 

A conflict probe is a decision support tool used 

by air traffic controllers to predict aircraft-to-aircraft 

conflicts
1
. Air traffic scenarios based on recorded live 

data are essential for the development, testing, and 

evaluation of a conflict probe. When analysts create 

these scenarios it is necessary to modify the recorded 

                                                      

1 A conflict is a situation in which a pair of aircraft fails to have 

the separation standards administered by the Federal Aviation 

Administration. These standards are typically five nautical miles 

horizontally and 1000 or 2000 feet vertically, depending on the 

aircraft’s navigational equipment. 

data in order to introduce conflicts and encounters
2
 

that do not exist in the live data.  

In order to control the characteristics of the 

conflicts and encounters introduced into a modified 

air traffic scenario, the Federal Aviation 

Administration developed a software application that 

uses a genetic algorithm
3

 (GA) to time shift 

individual flights in the scenario so that the 

distribution of aircraft-to-aircraft conflicts and 

encounters meets user-defined constraints.  

 

 

Figure 1. Time Shifting 

 

Figure 1 graphically depicts time shifting. This 

figure shows the recorded timeline for a flight 

containing a flight plan (denoted FP) and a number of 

track points (denoted Tk0, Tk1, … , Tkn). This 

timeline could contain other information such as 

flight plan amendments, interim altitude messages, 

etc. The figure also shows a modified timeline with 

the flight’s events shifted in time by a single flight 

specific value (denoted in the figure as 

flight.delta_time).  

 

                                                      

2  An encounter is a situation used by analysts for evaluation 

purposes and may be defined as a situation in which a pair of 

aircraft come within a defined separation distance, typically 25 to 

30 nautical miles horizontally and 4000 to 5000 feet vertically. 
3 A genetic algorithm is a search heuristic that mimics the process 

of natural evolution. The developers used [1], [2], [3], and [4] for 

this implementation.  
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In order for analysts to study the efficiency and 

accuracy of conflict probe tools used in the air traffic 

environment, it is necessary for scenarios to contain 

conflicts and encounters. These events do not occur 

often in recorded traffic data because air traffic 

controllers already resolved potential conflicts before 

they take place. The purpose of time shifting flight 

data in a scenario is to create time overlap of flights 

flying at similar routes. This will likely generate 

conflicts and encounters in the altered scenario data. 

The Original Implementation - Cat 

The developers implemented the GA as an 

application (called Cat) in 2002 using the Oracle® 

Pro*C/C++ Precompiler, which is a programming 

tool that enables the user to embed SQL
4
 statements 

in a high level programming language, and the GNU
5
 

g++ compiler, which is a *nix-based
6
 C++ compiler. 

Although this is an Object-Oriented programming 

language, this implementation utilized only a few 

Object Oriented Design features and Cat was 

essentially a C program compiled on a C++ compiler. 

The developers initially used this implementation to 

determine whether a GA could solve the problem in a 

reasonable amount of time [5]. The developers then 

interfaced the application with existing tools and 

processes [6][7]. 

For a given problem, a GA requires a 

chromosome, (i.e, a potential solution that can be 

encoded as a bit stream) and a population (i.e, a 

number of potential solutions). As implemented for 

this problem, the GA defines a potential solution as a 

sequence of integer times that can be represented by 

the tuple: 

>∆∆∆< nttt ,..., 21  

Each delta time in the tuple represents the flight 

specific time shift value for each flight in the 

scenario. A number of these potential solutions 

comprise the GA’s population.  

                                                      

4  SQL is an acronym for Structured Query Language, a 

programming language for managing data in relational database 

management systems. 
5  GNU is a recursive acronym for “GNU’s Not Unix!” See 

http://www.gnu.org/. 
6 *-nix refers to indicate all operating systems similar to Unix; 

specifically in this case any Linux operating system. 

A GA also requires a fitness function. For this, 

the developers designed a function that returns a 

value between 0.0 and 1.0 representing how well the 

potential solution solves the problem. The developers 

designed this function so that a value of 1.0 

represents a solution that meets all of the constraint 

bounds. The original application implemented this 

fitness function using socket programming 

techniques so that the evaluation of the fitness of 

each potential solution was multi-processed. See [8] 

for a detailed description of these techniques. 

The developers modified the original application 

in 2008 to eliminate the embedded SQL so that it 

could input its data in flat files
7
. This was done to 

eliminate the application’s dependence on the 

Oracle® Pro*C/C++ Precompiler. 

Although analysts have successfully used this 

application for many years, the number of iterations 

required for the GA to reach an acceptable solution 

has increased dramatically. This has been due to (1) 

the use of larger scenarios containing more flights 

over longer time periods, which caused the search 

space to grow, and (2) the addition of new constraints 

and the tightening of existing constraints, which 

caused the solution space to shrink. Additionally the 

procedural nature of the implementation was not 

conducive to adaptation and resulted in 

improvements greatly increasing the complexity of 

the code. 

The Island Model – Cat Distributed 

Eventually the decision was made to re-

implement Cat with a modular design, distributed 

fitness function, and several optimizations that would 

not be feasible to add to the original implementation. 

During the design phase of the re-implementation a 

method for distributing Cat was discovered that led 

to a prototype, and eventual upgrade of the original 

system. 

This upgrade (called Cat_dist) provided the 

capability to run independently on multiple 

computers across the network, and then periodically 

share their solution set with each other via a file on a 

shared network drive. This process is known as an 

                                                      

7 In the context of this paper, a flat file is an ASCII-formatted file 

containing one record per line. 



Island Model in a GA context, and is depicted 

graphically in Figure 2. Following the evolution 

metaphor; an Island Model is an implementation of a 

GA where several instances of the GA are run in 

parallel, each instance representing an island. 

Periodically these islands experience migration, i.e. 

the sharing of their solution sets. See [9] for a 

description of this interim solution along with a 

description of a Design of Experiment performed to 

determine the optimum values for many of the GA’s 

parameters.  

The main benefit provided by the Island Model 

is that as the GA explores the solution space it tends 

to reach a local optimum, which causes the fitness to 

plateau. The stochastic processes in the GA allow the 

algorithm to break out of this local optimal 

eventually, but it often takes a relatively long time. 

The Island Model addresses this by running multiple 

instances of the GA in parallel each will typically 

plateau at different times. By staggering the times at 

which plateaus occur infuses the stagnant population 

with a means to break through a fitness plateau [1]. 

 

 

Figure 2. Example of a distributed Cat run 

 

Figure 2 shows an example of five instances of 

Cat_dist being run on five workstations with the best 

population (denoted Best_pop) being shared on 

Workstation 3. The five instances run independently 

of each other. Periodically each instance compares its 

current population with the saved best population. If 

the saved best population is better than the local 

population the best solution is copied and vice versa. 

This upgrade prolonged the utility of the original 

application, but the developers desired a more robust 

and extensible solution using modern object-oriented 

design techniques [10]. 

The Reimplementation – Jaguar 

The improvements implemented in the 

reimplementation include:  

• Maintainability of the application by using a 

modular design based on object-oriented 

techniques,  

• Usability of the application with implementation 

of more efficient logging techniques, 

configuration methods, and user interfaces, 

• Quality of the solution with the use of a more 

accurate method for the calculation of aircraft-to-

aircraft conflict rather than approximation, and 

• Timeliness for obtaining a solution through 

optimizations such as caching fitness scores and 

filter flight pairs as well as distributing the fitness 

function across multiple processors. 

 

 

Figure 3. Overall Jaguar Flow 

 

Figure 3 depicts the flow of the program 

implementation. The program begins with recorded 

flight data as input. The data is then passed through a 



filtering process to reduce the search space. The 

filtering process is discussed in detail later in this 

paper.  

The GA generates delta time values for each 

flight in the scenario. Delta times for the first 

generation are either supplied as input to the program 

by the user, or randomly generated. Subsequent 

generations are created from the current generation 

using processes designed to mimic evolution. Each 

generation is evaluated by a fitness function, which 

rates how well each individual in the population 

solves the problem. An individual is considered a 

solution if it meets some minimum fitness value, 

defined by the user. If a solution has been found, the 

application returns the solution and exits. If a solution 

has not been identified, the GA is run on the new 

population. 

Jaguar uses the same overall process used by Cat 

as it has proven to be effective in practice; the 

implementation differences result in a better, more 

modular design and specific optimizations and 

performance enhancements. These improvements are 

extensive enough that it was more practical to rewrite 

the code from scratch, rather than trying to modify 

the original code.  

Watchmaker Framework 

Jaguar uses The Watchmaker Framework
8

, 

which is open source software that provides an 

extensible, high-performance, object-oriented 

framework for implementing platform-independent 

evolutionary/genetic algorithms in Java. Watchmaker 

provides a solid foundation for implementing the GA 

with a set of modular components. 

Conflict Probe 

 The fitness function is the component of the GA 

which evaluates a given solution and assigns it a 

value in the range 0.0-1.0. The fitness function used 

by Cat and Jaguar evaluates a solution by modifying 

the tracks of each flight in a scenario by the time shift 

value specific to that flight. The resulting conflict and 

encounter properties are evaluated and compared 

against the user defined constraints. 

                                                      

8 See http://watchmaker.uncommons.org/ 

 The evaluation of conflict and encounter 

properties is known as a Conflict Probe (CP). The 

accuracy of the CP is directly responsible for the 

accuracy of the solution generated by Jaguar. 

 Implementation of a CP is non-trivial and as a 

result the CP used by Cat is a simple approximation 

of what is used in the field. A key advantage of the 

modular design of Jaguar is the use of a much more 

accurate CP that was developed in-house for analysis. 

The in-house algorithm, Track Conflict Probe (TCP), 

results in higher quality solutions generated by 

Jaguar in comparison to Cat. 

 A drawback to utilizing the improved CP is the 

increase in amount of time to run. Therefore, making 

performance optimizations and enhancements to 

Jaguar are even more important to compensate for 

the extra time spent determining aircraft-to-aircraft 

conflicts and encounters. 

 Both the approximation used by Cat and the in-

house algorithm used by Jaguar determine 

encounters and conflicts through flight by flight 

comparison. When determining encounters and 

conflicts for a unique flight pair, calculations are 

performed on a set of track points, paired by their 

common track time. 

 The calculations performed on a set of track 

points are based on the distance of the two aircraft at 

the current track time in comparison to the separation 

parameters. These same calculations are performed in 

both the approximation and TCP; determining the 

distance vertically and laterally. 

 The difference between the two implementations 

lies in what the algorithms do when they find a track 

point that is within the separation parameters 

representing an encounter or conflict, respectively. 

The approximation keeps track of the total number of 

points for an aircraft pair that are representative of an 

encounter or conflict. However, this logic does not 

include the ability to merge conflicts that is applied in 

the field. TCP includes the logic to merge conflicts 

together, i.e. if two conflicts occur in a close enough 

timeframe to each other they become represented by 

a single conflict. 

 In contrast to merging conflicts together, the 

approximation algorithm also does not consider the 

case where a single aircraft pair can have multiple 

conflicts. Since the approximation simply counts the 

number of points in conflict, the points could be 



spaced anywhere throughout the time the flights 

overlap. TCP stores multiple conflicts when the 

points in conflict are outside the window of time to 

merge into a single conflict. 

 Although the mathematical computations are the 

same between the approximation and TCP, the results 

of the algorithms vary. The differences between the 

algorithms result in different conflict and encounter 

counts which skew the results generated by the GA. 

Results generated by a suite of in-house tools may 

produce a different outcome in terms of encounter 

and conflict counts when the approximation is 

applied through the execution of Cat. On the 

contrary, since Jaguar takes advantage of using TCP, 

one of the in-house tools, the GA produces the same 

results as later runs of the in-house tools. 

Spatial Filter 

If the tracks of any two flights are overlaid, 

independent of time, and they never violate the 

minimum conflict/encounter separation standards, 

then no matter how they are time shifted they will not 

be affect the conflict/encounter properties of the 

scenario. With this in mind, a spatial filter was 

created for Jaguar; for each flight a bounding box is 

created around each pair of adjacent track points 

which represents the minimum conflict/encounter 

separation. Flights are then paired, and if their 

respective bounding boxes do not intersect the pair is 

eliminated from the search space. 

 

Figure 4. Bounding Boxes - a graphical 

representation of how the filtering works; bounding 

boxes are drawn around each pair of track points for 

two tracks, intersections are shown in red. 

Cache 

Time shifts are relative to a pair of flights, and as 

the fitness converges over time the same flight pair-

time shift combinations appear with increasing 

frequency. This property led us to implement a cache 

for the fitness function, which in effect trades some 

memory for increased speed.  

Jaguar uses the guava-libraries for compute cache. 

This cache is keyed by an object containing two 

flights and their relative time offset, mapped to a Java 

List. If the key is contained in the map the associated 

value is returned, otherwise the value is computed 

based on the fitness function and that value is then 

stored in cache. The cache has a maximum number of 

entries, and entries are expired based on a Least 

Recently Used (LRU) eviction strategy, which is a 

cache eviction strategy that discards the least recently 

used items first. 

Distributed Fitness Function 

Jaguar uses a Master-Worker architecture where 

the GA is run on a Master node which distributes the 

fitness function computation to Workers.  
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Figure 5. Example of a Jaguar Run 

 

Figure 5 shows an example of a typical Jaguar 

run. In this example, the Jaguar-Master is running on 

Workstation 1, while five Jaguar-Workers are 

running, one on each of the workstations.  

Constraints 

In the original implementations of Cat, the 

constraints were specific and not extensible. In 

Jaguar, constraints are reflectively created based on 



the class names and parameters defined in an XML-

structured file, which is designed to be flexible. The 

constraints follow the Composite Design Pattern so 

that they can be constructed in an elaborate tree 

structure with different branches weighted differently 

or as a basic list by adding all the constraints to a 

single composite constraint. Each constraint requires 

a constraint target, which allows for different 

evaluation strategies. For example, the target can be a 

single value or a range of values or it can be a binary 

evaluation (i.e, 1 if the target is met, 0 otherwise) or 

assigned a value based on a user defined function 

(i.e., linear, exponential, etc) difference from the 

target. 

Conclusion 

The Federal Aviation Administration supports 

the development of decision support tools (DSTs) 

through the implementation of NextGen; providing 

new technology to accommodate the growing 

demand of air traffic.  Analysis of DSTs is conducted 

through the use of recorded air traffic data. However, 

recorded air traffic data often does not contain 

conflicts and encounters because air traffic 

controllers have rerouted traffic to avoid such 

occurrences. 

The goal of this paper is to describe an algorithm 

developed by the Federal Aviation Administration 

that meets user constraints for occurrences such as 

conflicts and encounters. The initial implementation 

of the algorithm solved the problem in a timely 

fashion until the problem became more complex. At 

this point, the large number of iterations required to 

find a solution resulted in a redesign. The new 

redesign solved the problem of timeliness by 

implementing the island model. However, the 

problem still existed that the implementation was not 

flexible. With flexibility in mind, the team used the 

logic of the previous implementations to develop 

Jaguar. Jaguar maintains speed but improves the 

flexibility, allowing the implementation of new 

constraints and concepts. 

The future of Jaguar may include shifting air 

traffic data in search for different types of 

occurrences outside of the current conflict and 

encounter implementation. The current 

implementation will also undergo thorough solution 

time and solutions validation. With the flexibility 

implemented in Jaguar the options for application 

have grown drastically. 

Acronyms 

CP Conflict Probe 

FP Flight Plan 

GA Genetic Algorithm 

LRU Least Recently Used 

SQL Structured Query Language 

TCP Track Conflict Probe 

XML Extensible Markup Language 
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